HABITATS CAN TRANSPORT perhaps to Mars
Habitats could comfortably transport large human populations
via orbits throughout the Solar System.
Simulate earth gravity via continuous spin around longitudinal axis.
Large external mirrors could reflect sunlight into habitat
to provide power for production and life support requirements.
Island-3 habitats (r = 3,600 m, est. l= 7.2 km) has about 40,000 acres
of surface area for living quarters, agriculture and other needs.
via orbits throughout the Solar System.
Simulate earth gravity via continuous spin around longitudinal axis.
Large external mirrors could reflect sunlight into habitat
to provide power for production and life support requirements.
Island-3 habitats (r = 3,600 m, est. l= 7.2 km) has about 40,000 acres
of surface area for living quarters, agriculture and other needs.
HUMANS CAN ORBIT MARS IN HABITATS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Deimos and Phobos
Two moons of Mars could serve as operational bases
and likely provide considerable construction materials.
Many agricultural items produced in habitat can transfer to Martian surface; such items can help terraform Mars over many years. Eventually, Mars (both surface and subsurface) will prove to be an expansive source of agriculture and raw materials. However, Mars is unlikely to ever reproduce Earth like gravity; longitudinal spin of the cylindrical habitats can produce 1-g via centrifugal force. | Martian humans will always prefer to live in the large orbiting habitats; conditions will be more "Earth like" and access to interplanetary travel will be much easier than for the Martian humans who choose to reside on Mars itself.
In contrast with living submerged under Martian surface,
orbiting habitats provide a ready made,
comfortable and controlled environment.
Agriculture
flora would produce oxygen and food fauna for petting and food
Simulated Earth Gravity
from longitudinal spin of cylindrical habitat. Energy Source sunlight from large exterior mirrors which never tarnish.
Before habitat orbits Mars,
habitat has to get there.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
USE HOHMANN TRANSFER (HT) FROM EARTH TO MARS. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PROBLEM: During lengthy space voyages, humans require plentiful supplies: food, water, oxygen as well as Earth like gravity. None of those are now available in current space vehicles.
Infrequent, interplanetary flights are now accomplished by Artificial Intelligence (AI) devices inside small capsules. Sending humans in such vessels seems pointless; not only would travelers have to endure months/years of 0-g conditions which would likely permanently disable them; but providing required consumables would be challenging at best. SOLUTION: On the other hand, interplanetary flight conditions could greatly improve if humans traveled on habitats during these lengthy missions. Habitats can be very comfortable "homes" during lengthy flights.
Onboard water stores and agriculture provide oxygen and food.
Centrifugal force from longitudinal spin provides 1-g gravity. Large human population provides essential social interaction. Constant communication with "home planet" reinforces purpose. As a matter of fact, habitats might be necessary for the several years required for trips to other planetary systems: Jupiter and moons, Saturn and rings and moons, Uranus, Neptune, perhaps even the planetoids such as: Pluto, Ceres, etc. |
GETTING THERE
Transfer Orbit (TO) is a highly eccentric orbit between two planetary orbits. A non-powered object must use a transfer orbit to travel between planetary orbits. The most efficient transfer orbit is a Hohmann Transfer (HT), which uses least possible fuel for "burns" to enter/exit TOs between orbits.
For HT from Earth to Mars, the perihelion (nearest point to Sol) is the exit point from Earth's orbit and its aphelion (farthest point from Sol) is where it intercepts Mars.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HT APHELION (QHT) AND HT PERIHELION (qHT) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HT Aphelion (QHT) is the semi-major axis of Mars, a♂.
QHT = a♂ |
HT Perihelion (qHT) is semi-major axis of Earth, aⴲ.
qHT = aⴲ = 1.0 AU | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
After 259 days of unpowered flight, habitat reaches destination aphelion. Vehicle emits a controlled thrust to orbit destination planet. | At departure perihelion, vehicle emits controlled thrust to exit Earth's orbit and enter transfer orbit. Transfer must begin when properly planned. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SEMI-ORBIT GIVES TRANSFER TIME | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
From QHT and qHT, compute semi-major axis of transfer orbit, aHT
of the semi-orbit from qHT to QHT.
|
From QHT and qHT , compute: ℓ and e:
As Habitat orbits from qHT to QHT, angle, θ, goes from 0° to 180°. Compute radius, distance from Sol to Habitat, for each angle, θ.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APPROXIMATE INCREMENTALS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Use Pythagoras to approximate incremental distances between each coordinate [distance between (Xθ-1,Yθ-1) and (Xθ,Yθ) ]
| Use point velocity to approximate incremental travel times.
[between (Xθ-1,Yθ-1) and (Xθ,Yθ) ] |
PROGRESS BY DEGREES | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
θ | Rθ | Vθ | Xθ | Yθ | dθ | dkm | tθ | Tθ |
Table shows total travel time
for selected angle, theta,(θ),
of Hohmann Transfer from Earth to Mars
BACKGROUND: Hohmann Transfers (HTs)
are the most energy efficient transfer orbits. Hohmann transfer time is easily calculated.
| ||||||
Deg | AU | km/sec | AU | AU | incr. AU | incr. km | incr. days | cumm. days | |||||||
0° | 1.000 | 34.239 kps | 1.0000 | 0.0000 | n/a | n/a | n/a | n/a | |||||||
1° | 0.9998 | 34.238 kps | 0.9998 | 0.0174 | 0.0174 | 2,610,979 | 0.92 | 0.92 | |||||||
2° | 0.9994 | 34.237 kps | 0.9994 | 0.0349 | 0.0174 | 2,611,138 | 0.92 | 1.85 | |||||||
3° | 0.9988 | 34.233 kps | 0.9988 | 0.0523 | 0.0174 | 2,611,457 | 0.92 | 2.77 | |||||||
. . . | . . . | . . . | . . . | . . . | . . . | . . . | . . . | . . . | Cumulative Times Approximate total travel time for any angular position during transfer. From perihelion(θ=0°) to 45°, 90° and 135°; with respective durations of 43, 95 and 167 days . | ||||||
45° | 1.0527 | 32.908 kps | 0.744 | 0.744 | 0.0185 | 2,767,364 | 1.02 | 43.03 | |||||||
90° | 1.2063 | 29.448 kps | 0.000 |
1.206
| 0.0215 |
3,210,053
| 1.34 | 95.46 | |||||||
135° | 1.4120 | 25.523 kps | -0.999 | 0.999 | 0.0249 | 3,736,381 | 1.84 | 166.97 | |||||||
. . . | . . . | . . . | . . . | . . . | . . . | . . . | . . . | . . . | |||||||
177° | 1.5195 | 23.710 kps | -1.517 | 0.079 | 0.02652 | 3,967,169 | 2.13 | 251.96 | Previous tables compute incremental distance/time for each degree of habitat's transfer. This table has examples for a few angles of cumulative travel times as shown. Source table has cumulative values for θ = 0° to 180°. Kepler's Equation uses an elegant method for more accurate travel times. | ||||||
178° | 1.598 | 23.712 kps | -1.518 | 0.053 | 0.02652 | 3,967,866 | 2.13 | 254.09 | |||||||
179° | 1.599 | 23.715 kps | -1.519 |
0.026
| 0.02652 |
3,968,331
| 2.13 | 256.22 | |||||||
180° | 1.5200 | 23.718 kps | -1.520 | 0.000 | 0.02653 | 3,968,564 | 2.13 | 258.35 | |||||||
Given | ℓ
1+e×cos(θ) |
| Rθ × cos(θ) | Rθ × sin(θ) | √[(Δx)2+(Δy2)] | dθ × (km/AU) 1 AU = 149,597,871km | dkm÷Vθ | Σtθ |
4) Orbital Velocity: Linear (V) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adjust for circular orbit, Rθ = a; and assume:
μSol ≈ 887 AU-km2/sec2
|
5) Orbital Velocity: Angular (ω) | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compute angular velocity
directly from a, semimajor axis. Divide total circumference angle (360°) by orbital period (in days).
CDeg ÷ PPO = 360° ÷ 671.0 days = 0.537°/day
Reduce above tables to:
With Habitat in the smaller, quicker orbit, it will daily decrement difference between Habitat in Parking Orbit and Mars in its orbit.
δ = ωPO - ω♂
δ = 0.537°/day - 0.526°/day = 0.011°/day
If Habitat is 1° behind Mars, Habitat will completely align with Mars in about 91 days.
TAlign = 1°/δTAlign = 1° ÷ .011°/dy= 91 days |
0 Comments:
Post a Comment
<< Home