Plot Orbits and Tell Time
1. Plot Dots
3. Use Kepler's Anamolies to compute precise times for any angle.
Use previous table's approximate orbit times to validate this model.
Recall Kepler's Second Law: For undisturbed Solar orbits, the line joining the object to the Sun sweeps out equal areas in equal intervals of time.
Recall simple geometry gives the total area inside an orbit (AEllipse = π a b) and Kepler's Third Law gives us the total orbit( T= √(a3/μ). Thus, finding times for parts of orbits should be a simple proportionality problem.
PROBLEM: Finding the "True Anomaly Area" is not a straightforward task. The vector, "r", from the Sun to the orbiting object does not sweep easy circular sectors; instead, it sweeps focus centered elliptical sectors.
Four hundred years ago, Kepler solved this problem by deriving his famous "Kepler's Equation". Since then, his equation has been derived by many different methods. Some pertinent concepts are briefly discussed below:
Aux. circle
Translate X-Y coordinates
---from Sun based where Sol is origin. (X☉,Y☉) = (0,0)
---to Auxilliary Circle (AC) based, where origin is AC center. (XAC,YAC) = (0,0)
XAC = X☉ xxxx
YAC = Y☉ xxxxxx
The AC based coordinates enable us to determine Ecentric Anomaly (E).
Thru Kepler's Equation, E enables us to determine transition duration for any ν.
Plot orbital positions with Sol based Cartesian Coordinates.
Determine as follows:
Determine as follows:
X☉ =Rν cos(ν) | Y☉ = Rν sin(ν) |
---|
Examples for ν values of 160° and 180°:
X☉ = R160 cos(160°) = -2.3 AU | Y☉= R160 sin(160°) = 0.84 AU |
---|---|
X☉ = R180 cos(180°) = -2.7 AU | Y☉ = R180 sin(180°) = 0.00 AU |
To determine length of radius vector, R, from Sol to satellite, use following polar equation:
Rν | = | l 1 + e × cos(ν) |
---|
TRUE ANOMALY: ν, is angle of the R vector. Ref. Angle (ν= 0°) is the ray connecting Sol to perihelion.
(In table, ν independently varies from 0° to 180° in 20° increments).
SEMI-LATIS RECTUM: l, is key to radius formula; distance from Sol to cycler at ν = 90°.
(In table, ν independently varies from 0° to 180° in 20° increments).
SEMI-LATIS RECTUM: l, is key to radius formula; distance from Sol to cycler at ν = 90°.
l = 1.0 AU =149,597,870.7 km (arbitrarily chosen to be same distance as from Sol to Terra).
SEMI-MAJOR AXIS: a, is longest distance from center to orbit; cycler at ν = 0°.
let a = 1.66 AU (arbitrarily chosen to give orbit a syndodic period, 2.135 years).
SEMI-MINOR AXIS: b, shortest distance from center to orbit. √(a×l)
b=√(1.587AU×1.0AU)=1.288 AU
let a = 1.66 AU (arbitrarily chosen to give orbit a syndodic period, 2.135 years).
SEMI-MINOR AXIS: b, shortest distance from center to orbit. √(a×l)
b=√(1.587AU×1.0AU)=1.288 AU
FOCUS: c, distance from orbit center to Sol; defined: √(a2-b2)
c= √(a2-b2) = 1.045 AU
ECCENTRICITY: e, measure of orbit's "flatness".
e = c/a = .623
c= √(a2-b2) = 1.045 AU
ECCENTRICITY: e, measure of orbit's "flatness".
e = c/a = .623
2. Connect Dots
Determine straight line distance increments with Pythagorean formula.
Δd | = | √((ΔX)2+(ΔY)2) | =√( | (X2-X1)2 | + | (Y2-Y1)2 | ) |
---|
μSol, Solar standard gravitational parameter, = 132,712,440,018 km3s−2
Use following formulas to approximate incremental times.
| ||||||
|
ν | Rν | X☉ | Y☉ | Δd | V | Δt | ||
---|---|---|---|---|---|---|---|---|
Deg | AU | AU | AU | AU | km | km/sec | secs | days |
160° | 2.451 | -2.30 | 0.84 | |||||
180° | 2.703 | -2.70 | 0.00 | 0.9286 |
138,914,962
| 11.021 | 12,604,896 |
145.89
|
Given | See above | See above | See above | See above | ΔdAU * 149,597,871 | See above. | See above. | ΔtSee/86,400 |
To approximate half of orbital period,
summ increments from ν = 0° to 180°.
Validate this approximation with a3 = k * T2 |
Use previous table's approximate orbit times to validate this model.
Recall Kepler's Second Law: For undisturbed Solar orbits, the line joining the object to the Sun sweeps out equal areas in equal intervals of time.
Recall simple geometry gives the total area inside an orbit (AEllipse = π a b) and Kepler's Third Law gives us the total orbit( T= √(a3/μ). Thus, finding times for parts of orbits should be a simple proportionality problem.
PROBLEM: Finding the "True Anomaly Area" is not a straightforward task. The vector, "r", from the Sun to the orbiting object does not sweep easy circular sectors; instead, it sweeps focus centered elliptical sectors.
Four hundred years ago, Kepler solved this problem by deriving his famous "Kepler's Equation". Since then, his equation has been derived by many different methods. Some pertinent concepts are briefly discussed below:
Aux. circle
Translate X-Y coordinates
---from Sun based where Sol is origin. (X☉,Y☉) = (0,0)
---to Auxilliary Circle (AC) based, where origin is AC center. (XAC,YAC) = (0,0)
XAC = X☉ xxxx
YAC = Y☉ xxxxxx
The AC based coordinates enable us to determine Ecentric Anomaly (E).
Thru Kepler's Equation, E enables us to determine transition duration for any ν.
|
4. Use numerical methods to plot orbit times on this orbit.
| |
Numerical Methods | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Previous work enables us to readily compute positions and durations for any orbiting body given the body's angular position. Thus, one can create a table with values for all integer degree values from 0° to 360°. One can also create a much smaller table with angular positions of 65° and 66°.
One can see respective durations of 29.69 days and 30.33 days. However, one might want to conduct reverse calculations to determine what values would result at a duration of exactly 30.0 days duration.
Unfortunately, considerable work by many scholars on Kepler's Equation still show that a straight forward solution is not obvious; thus, we must use numerical methods to approximate angles given an arbitrary duration. Therefore, following tables use linear interpolation to approximate true anomaly values for given durations.
Approximate νt
Arbitrarily choose tGiven between tν and tν+1. Example: 29.69 < 30.00 < 30.33
Note that True Anonmaly, ν= 65°, results in duration of 29.69 days, and ν+1 (66°) results in 30.33 days.
Best guess νt such that resulting tComp = tGiven
Δtν = tGiven - tν
Δtν+1 = tν+1 - tν Understood but not shown is Δν = 1° = 66° - 65°.
|
0 Comments:
Post a Comment
<< Home